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a b s t r a c t

Hardware constraints typically require the use of extended gradient pulse durations for clinical applica-
tions of diffusion-weighted magnetic resonance imaging (DW-MRI), which can potentially influence the
estimation of diffusion metrics. Prior studies have examined this effect for the apparent diffusion
coefficient. This study employs a two-compartment exchange model in order to assess the gradient pulse
duration sensitivity of the apparent diffusional kurtosis (ADK), a quantitative index of diffusional non-
Gaussianity. An analytic expression is derived and numerically evaluated for parameter ranges relevant
to DW-MRI of brain. It is found that the ADK differs from the true diffusional kurtosis by at most a few
percent. This suggests that ADK estimates for brain may be robust with respect to changes in pulse
gradient duration.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Because of the limited gradient strengths available on human
scanners, clinical applications of diffusion-weighted magnetic
resonance imaging (DW-MRI) typically require the use of ex-
tended pulse durations for the diffusion-sensitizing gradients in
order to obtain a sufficient degree of diffusion weighting [1].
As a consequence, apparent diffusion coefficient (ADC) estimates
derived from clinical DW-MRI data may differ, in principle, from
their ideal values as would be obtained in the narrow pulse lim-
it. For closed geometries with impenetrable barriers, it has in-
deed been demonstrated that the diffusion-weighted NMR
signal can be highly sensitive to the pulse duration [2]. However,
for the more open geometries relevant to biological tissues, the
effect of gradient pulse duration on ADC estimates is believed
to be generally modest [3], supporting a view that clinical diffu-
sivity maps are reasonably robust with respect to pulse duration
changes.

Recently, it has been shown that the diffusional kurtosis, a mea-
sure of diffusional non-Gaussianity, can also be estimated with
clinical DW-MRI [4–7]. Preliminary studies suggest that the diffu-
sional kurtosis holds promise as a metric for characterizing neural
tissue microstructure [8–12] and for studying pathologies such as
tumors [13,14], ischemic stroke [15] and attention-deficit disorder
ll rights reserved.
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[16]. Just as for the ADC, the apparent diffusional kurtosis (ADK)
obtained with DW-MRI can potentially depend on the gradient
pulse duration. Although one experiment has found the ADK in
rat thalamus to be robust with respect to pulse duration changes
[17], the pulse duration sensitivity of the ADK has not been previ-
ously addressed theoretically. In this article, we investigate the ef-
fect of pulse duration for a specific diffusion model that permits
analytic solution.

The model we consider is the two-compartment version of
the exchange model first proposed by Kärger and coworkers
[18,19]. Although highly idealized, the Kärger model (KM) captures
essential qualitative features of water diffusion in biological tissues,
where the compartments plausibly represent intra- and extra-
cellular spaces with differing compartmental diffusivities [20–23].
The exchange between compartments occurs via diffusion across
the cell membranes. When the membrane permeability is suffi-
ciently low, this transport can be accurately characterized by
an exchange rate. Modifications of the KM have also been
proposed [24,25] in order to better describe diffusion in certain
types of tissues.

One special property of the KM is that the ADC is indepen-
dent of the pulse duration, but this is largely consistent with
empirical observations for water diffusion in brain [17]. The
ADK for the KM does, in contrast, depend on the pulse duration,
as we shall show explicitly for the case of two compartments.
The magnitude of this dependence provides an indicator of the
robustness of the ADK with respect to changes in gradient pulse
duration and of how much the ADK may deviate from the true
diffusional kurtosis.

http://dx.doi.org/10.1016/j.jmr.2011.03.012
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2. Theory

2.1. Apparent diffusion metrics

The diffusion coefficient in a particular direction may be defined
by

DðTÞ � 1
2T

x2ðTÞ
� �

; ð1Þ

where x(T) is the net displacement of a diffusing spin over a time
interval T and the angle brackets signify an averaging over all the
spins within a region of interest (e.g., a voxel).

For pulsed gradient DW-MRI, the ADC measured with a signal
readout time TE corresponds to

Dapp �
c2

2b

Z TE

0
dt2

Z TE

0
dt1rðt1Þrðt2Þgðt1Þgðt2Þ xðt1Þxðt2Þh i; ð2Þ

where g(t) gives the time dependence for the diffusion-sensitizing
gradient pulse, b is the so-called b-value, r(t) is the spin flip func-
tion, and c is the gyromagnetic ratio for the spins [4]. In Eq. (2),
we assume that the initial radiofrequency excitation occurs at a
time t0 = 0 and that x(t) represents, as in Eq. (1), the net displace-
ment over a time interval t.

The b-value is given explicitly by

b � 2c2
Z TE

0
dt2

Z t2

0
dt1rðt1Þrðt2Þgðt1Þgðt2Þt1; ð3Þ

while the spin flip function has unit magnitude and changes sign at
times corresponding to any 180� radio frequency inversion pulses
[26]. For the sake of simplicity, we have taken the gradients to be
unidirectional and aligned with the diffusion direction of interest.
The condition that the NMR signal be refocused requires that

0 ¼
Z TE

0
dtrðtÞgðtÞ: ð4Þ

Note that Eqs. (2), (3) imply that the ADC, as we have defined it, de-
pends of the gradient time dependence but not on its strength (i.e.,
the ADC is invariant with respect to a rescaling of g). This definition
of the ADC corresponds to minus the initial slope for the natural
logarithm of NMR signal amplitude as a function of the b-value.

For the classic Stejskal–Tanner pulse sequence [27,28], the gra-
dient pulse takes the form

rðtÞgðtÞ ¼ g0 Hðt � DÞ � Hðd� tÞ½ �; ð5Þ

for 0 6 t 6 Dþ d and with H(t) being the Heaviside step function
(outside this interval the gradient pulse vanishes). The gradient
amplitude is parameterized by g0, the pulse duration is d, and the
diffusion time is D. Consistency requires that D P d:

By applying Eq. (5) to Eq. (3) and setting TE = D + d, one may
readily verify the familiar expression

b ¼ ðcg0dÞ
2ðD� d=3Þ: ð6Þ

Moreover, one can show

lim
d!0

DappðD; dÞ ¼ DðDÞ; ð7Þ

so that the ADC approaches the true diffusion coefficient in the nar-
row pulse limit.

The diffusional kurtosis is defined by [4,6]

KðTÞ �
x4ðTÞ
� �
x2ðTÞh i2

� 3: ð8Þ

For Gaussian diffusion, K(T) vanishes and, more generally, it pro-
vides a dimensionless index of diffusional non-Gaussianity.

The ADK determined from DW-MRI data is given by [4]
Kapp �
c4

ð2bDappÞ2
Z TE

0
dt4

Z TE

0
dt3

Z TE

0
dt2

�
Z TE

0
dt1rðt1Þrðt2Þrðt3Þrðt4Þgðt1Þgðt2Þgðt3Þgðt4Þ

� hxðt1Þxðt2Þxðt3Þxðt4Þi � 3hxðt1Þxðt2Þihxðt3Þxðt4Þi½ � ð9Þ

In analogy with Eq. (7), we have, for the Stejskal–Tanner pulse se-
quence, the narrow pulse limit

lim
d!0

KappðD; dÞ ¼ KðDÞ: ð10Þ

As for the ADC, the ADK as defined by Eq. (9) is independent of the
gradient strength.

2.2. Kärger model

The general KM is characterized by N compartments with
intrinsic diffusivities Di and relative particle number fractions fi

for i = 1, 2, . . ., N. The exchange between compartments is governed
by the transition rate constants Rij for a jump from compartment j
to compartment i. For diffusion in the direction of the x coordinate,
the basic KM equations are then [19]

@

@t
Ciðx; tÞ ¼ Di

@2

@x2 Ciðx; tÞ þ
XN

j¼1

RijCjðx; tÞ; for i ¼ 1;2; . . . ;N;

ð11Þ

where Ci(x, t) is the particle concentration at position x and time t.
The concentrations are related to the number fractions by

fi ¼
Z 1

�1
dxCiðx; tÞ

�XN

j¼1

Z 1

�1
dxCjðx; tÞ: ð12Þ

By definition, the number fractions satisfy

1 ¼
XN

i¼1

fi: ð13Þ

For the fi to be independent of time requires also that

0 ¼
XN

j¼1

Rijfj: ð14Þ

In addition, detailed balance demands that [29]

Rjifi ¼ Rijfj; ð15Þ

which follows from an assumption of time reversal symmetry in the
underlying microscopic dynamics [30]. The equilibrium condition of
Eq. (14) is explicitly stated by Kärger and coworkers [19]. While
they do not mention the detailed balance condition of Eq. (15), it
is generally appropriate for water diffusion in biological tissues
and implicitly utilized in their analysis for the two-compartment
case of N = 2 [18,19]. When Rij = 0, Eq. (11) simply reduces to N
independent diffusion equations for the concentrations Ci.

For the rate constants, we adopt the convention that Rij is for a
transition from j to i, rather than the i to j convention employed by
Kärger et al. [19]. The j to i convention is often used in the context
of master equations [29], which are the closely related to the KM,
and has the advantage of being more consistent with the standard
index notation used in linear algebra.

By taking into account the constraints of Eqs. (13)–(15), the N
compartment KM is seen to be described by a total of
(N2 + 3N � 2)/2 free parameters. We emphasize the equilibrium
and detailed balance conditions are fully independent. In particu-
lar, Eq. (14) restricts the diagonal components of Rij, but Eq. (15)
does not.



Fig. 1. Contour plot of the percent error for the apparent diffusional kurtosis as
calculated with the Kärger model and a Stejskal–Tanner pulse sequence.
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For the special case of N = 2, which we now consider in detail,
the four free parameters may be taken as the compartmental diffu-
sivities D1 and D2, the number fraction f1 = 1 � f2, and the exchange
rate constant Re � R12=f1 ¼ R21=f2.

The second order position correlation function for the KM with
N = 2 is

hxðt1Þxðt2Þi ¼ 2Dt1; ð16Þ

assuming that t1 6 t2, where D is the averaged diffusion coefficient
for the total system given by

D � f1D1 þ f2D2: ð17Þ

It should be noted that Eq. (16) covers the general case since for
t1 > t2 one may simply use the trivial identity x(t1)x(t2) = x(t2)x(t1)
to find xðt1Þxðt2Þh i ¼ 2Dt2. Since t1 and t2 refer to time intervals
(i.e., time periods over which the diffusion is observed), Eq. (16) is
consistent with time translation invariance, as is required for a sta-
tionary system. For t1 = t2, Eq. (16) is equivalent to the familiar
expression of Eq. (1). The spatial averaging implied in Eq. (16) is ele-
mentary since the KM lacks geometrical structure. That the right
side of Eq. (16) contains only a single time parameter is related to
the fact that velocities for the KM are uncorrelated for different time
intervals.

The fourth order position correlation function for the two-com-
partment KM is

xðt1Þxðt2Þxðt3Þxðt4Þh i ¼ 4D2t1ð2t2 þ t3Þ

þ 4D2K0

3R2
e

6Ret1 þ 3e�Ret1 þ 2e�Ret2
�

þ e�Ret3�2e�Reðt2�t1Þ � e�Reðt3�t1Þ � 3
�
; ð18Þ

assuming that t1 6 t2 6 t3 6 t4. The parameter K0 corresponds to
the initial diffusional kurtosis and is given explicitly by

K0 � 3f 1f2
ðD1 � D2Þ2

D2
: ð19Þ

Just as with Eq. (16), commutativity of the positions implies that the
fourth order correlation function for an arbitrary time ordering can
be derived from Eq. (18). The derivations of Eqs. (16) and (18) are
outlined in the Appendix.

By using Eqs. (1), (8), (16), and (18), we find the two-compart-
ment KM diffusion metrics:

DðTÞ ¼ D; ð20Þ

and

KðTÞ ¼ 2K0

ReT
1� 1

ReT
1� e�ReT
� �	 


: ð21Þ

The KM kurtosis of Eq. (21) was derived first for f1 = f2 by Cao [31]
and for arbitrary volume fractions by Jensen and co-workers [4].
Note that the kurtosis depends on the observation time interval
and the exchange rate constant, but the diffusion coefficient is a
constant and independent of the exchange rate constant as has been
observed in several prior studies [6,20,21,23].

By performing the integrals in Eqs. (2) and (9) with TE ¼ Dþ d,
the KM ADC and ADK for a Stejskal–Tanner sequence can be deter-
mined analytically as

DappðD; dÞ ¼ D; ð22Þ

and
KappðD; dÞ ¼
2K0

15ðX � Y=3Þ2Y4 15XY4 � 9Y5 � 40Y3 þ 60Y2 � 120
h

þ 120ðY þ 1Þe�Y þ 120ðY � 1Þe�X þ 60ðY � 1Þ2e�XþY

þ60e�X�Y
�

ð23Þ

with X � ReD and Y � Red. So for the KM, the ADC is exactly equal to
the true diffusion coefficient for any value of the gradient pulse
duration. The ADK differs, in general, from the true kurtosis, but
Eq. (23) is consistent with the narrow pulse limit of Eq. (10).

3. Results

In order to investigate the deviation of the KM ADK from the
true kurtosis, we define the percent error as:

e � 100 � KappðD; dÞ � KðDÞ
KðDÞ : ð24Þ

By using Eqs. (21) and (23), this error was calculated for
0 6 d=D 6 1 and 0 6 ReD 6 10. This includes the range of physical
interest for standard DW-MRI of brain, since 0 6 d 6 D is required
for any Stejskal–Tanner sequence, D is typically in the range of
20–200 ms, and Re in brain has been estimated to be roughly
10 s–1 [21]. We note that e is independent of the diffusivities and
the number fractions, as these enter the ADK only through the pre-
factor K0 in Eq. (23).

A contour plot for e is shown in Fig. 1. The error vanishes for
either d/D = 0, in accord with Eq. (10), or for the no exchange limit
of ReD = 0. The error also vanishes for a line corresponding approx-
imately to d/D = 0.85; to the left of this line, the error is positive,
while to the right it is negative. The maximum amplitude of the er-
ror is 6.2% for d/D = 0.464 and ReD = 6.82. As a specific example,
Fig. 2 compares K(D)/K0 with KappðD; dÞ=K0 for d/D = 0.6 and
Re = 10 s–1. In this case, a maximum error of 5.63% occurs for
D = 653 ms.

4. Discussion

For clinical DW-MRI, hardware and time constraints substan-
tially limit the diffusion information that is feasible to acquire. In
most cases, only the ADC in selected directions and related quanti-
ties such as the diffusion tensor eigenvalues and the fractional
anisotropy are estimated.

Recent work has demonstrated that the diffusional kurtosis may
also be obtained using clinical scanners within scan times of a few
minutes, thus adding a new diffusion metric to the clinical toolbox



Fig. 2. True (K) and apparent (Kapp) diffusional kurtoses as functions of the diffusion
time for Re = 10 s�1 and d/D = 0.6. The two curves nearly coincide demonstrating the
insensitivity of Kapp to the gradient pulse duration.
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[4–7]. The practical estimation of the kurtosis is based of the
formula

ln
SðbÞ
Sð0Þ

� �
¼ �bDapp þ

1
6

b2D2
appKapp þ Oðb3Þ; ð25Þ

where S(b) is the signal amplitude as a function of the b-value. Fit-
ting ln [S(b)] data for three or more b-values to Eq. (25), with the
O(b3) terms excluded, then yields estimates for both the ADC and
the ADK. This procedure is a simple extension of the conventional
linear fit to ln [S(b)] used in diffusion tensor imaging. In brain, fits
to Eq. (25) usually employ maximum b-values of about 2000–
3000 s/mm2. In practice, the accuracy of estimates for the ADC
and ADK may depend on a variety of factors including the signal-
to-noise ratio, choice of b-values, and intrinsic tissue properties
such as inter-compartmental water exchange rates [6].

One potential confounding effect stems from the fact that the
gradient pulse durations for clinical DW-MRI are typically long be-
cause of hardware limitations, often being comparable to the diffu-
sion time D [1]. For this reason, the narrow pulse limit connections
of Eqs. (7) and (10), for the ADC and ADK to the ideal diffusion coef-
ficient and kurtosis, do not necessarily apply. Moreover, a strong
dependence of the ADC and ADK on pulse duration would make
them less attractive as clinical measures, since their values would
depend significantly on the specific sequence parameters utilized.

However, a prior theoretical study of diffusion in open geome-
tries [3] and an experimental study of water diffusion in rat thala-
mus [17] have both found the effect of pulse duration on the ADC
to be relatively small. These results therefore help to justify use of
the ADC for clinical applications.

Here we have performed a similar theoretical analysis for the
KM ADK, finding that an extended pulse duration changes the
ADK by at most a few percent for model parameters relevant to
DW-MRI of brain. Although not definitive, our results do suggest
that the water ADK in brain is insensitive to changes in the pulse
duration, supporting the robustness of ADK estimates based on
clinical DW-MRI. The previously mentioned rat thalamus experi-
mental study also observed the water ADK to change very little
with pulse duration [17], in consistency with our findings.
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Appendix

In order to derive Eqs. (16) and (18), it is convenient to intro-
duce the displacement probability density, Pij(x, t), which corre-
sponds to the solution of Eq. (11) with the initial condition:

Pijðx;0Þ ¼ dijdðxÞ: ð26Þ

Physically, Pij(x, t) is the probability density for moving a dis-
tance x over a time interval t, while beginning in compartment j
and ending in compartment i. Given the probability density, the
particle concentration is determined by:

Ciðx; tÞ ¼
XN

j¼1

Z 1

�1
dyPijðx� y; tÞCjðy;0Þ; ð27Þ

so that Pij(x, t) plays the role a Green’s function for Eq. (11).
If we define the Fourier transformed probability ePijðq; tÞ by

Pijðx; tÞ ¼
Z 1

�1

dq
2p
ePijðq; tÞeiqx; ð28Þ

then the KM equations can be rewritten as

@

@t
ePijðq; tÞ ¼ �Diq2ePijðq; tÞ þ

XN

k¼1

Rik
ePkjðq; tÞ; ð29Þ

with the initial conditionePijðq;0Þ ¼ dij: ð30Þ

Here the parameter q is analogous to the wavenumber of q-space
MRI [1].

By applying standard methods, one can obtain the solution

ePijðq; tÞ ¼

ffiffiffi
fi

fj

s XN

n¼1

ai;nðqÞaj;nðqÞe�knðqÞt ; ð31Þ

where ai,n(q) indicates a complete set of N orthonormal eigenvec-
tors with the eigenvalues knðqÞ so that

knðqÞai;nðqÞ ¼ Diq2ai;nðqÞ �
XN

j¼1

Rij

ffiffiffi
fj

fi

s
aj;nðqÞ: ð32Þ

Note that ai,n(q) and knðqÞ are even functions of q and that knðqÞP 0
for any physically sensible solution. The completeness and orthog-
onality of ai,n(q) follow from the fact that they are the eigenvectors
of a real symmetric matrix, which is a consequence of the detailed
balance condition of Eq. (15).

In terms of the displacement probability, the second order posi-
tion correlation function can be written

hxðt1Þxðt2Þi ¼
XN

i;j;k¼1

Z 1

�1
x2dx2

Z 1

�1
x1dx1Pijðx2 � x1; t2 � t1Þ

� Pjkðx1; t1Þfk; ð33Þ

for t1 6 t2. By using Eq. (28), this can be reduced to

hxðt1Þxðt2Þi ¼ �
XN

i;j¼1

@2

@2q
ePijðq; t1Þfj

" #�����
q¼0

: ð34Þ

An analogous argument for the fourth order position correlation
function leads to

hxðt1Þxðt2Þxðt3Þxðt4Þi

¼
XN

i;j;k;l¼1

@4

@4q1

þ 3
@2

@2q1

@2

@2q2

þ @2

@2q1

@2

@2q3

 !ePijðq3; t3 � t2Þ
"

� ePjkðq2; t2 � t1ÞePklðq1; t1Þfl

#�����
q1 ;q2 ;q3¼0

;ð35Þ
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where t1 6 t2 6 t3 6 t4.
For the special case of N = 2, the transition rate constants may

be written as the 2 � 2 matrix

R11 R12

R21 R22

� �
¼ Re

�f2 f1

f2 �f1

� �
; ð36Þ

which automatically satisfies the constraints of Eqs. (14) and (15).
By solving the eigenvector problem of Eq. (32) for N = 2, one

finds the KM eigenvalues to be

k1 ¼
1
2
ðD1 þ D2Þq2 þ Re
� �
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD1 � D2Þ2q4 � 2Reðf1 � f2ÞðD1 � D2Þq2 þ R2

e

q
ð37Þ

and

k2 ¼
1
2
ðD1 þ D2Þq2 þ Re
� �
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD1 � D2Þ2q4 � 2Reðf1 � f2ÞðD1 � D2Þq2 þ R2

e

q
: ð38Þ

The corresponding eigenvectors are

ai;1 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ c2
p

1
c

� �
; ai;2 ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c2
p

�c

1

� �
; ð39Þ

where

c ¼ D1q2 þ Ref2 � k1

Re

ffiffiffiffiffiffiffiffi
f1f2

p : ð40Þ

A straightforward, albeit lengthy, calculation using Eqs. (31),
(34)–(38), (39) leads then directly to the results of Eqs. (16) and
(18).
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